Some Neumann-Bessel series and the Laplacian on polygons

نویسندگان

چکیده

Several sums of Neumann series with Bessel and trigonometric functions are evaluated, as finite functions. They arise from a generalization the expansion eigenstates Laplacian in regular polygons. A simple accurate approximation J0(x) is found on interval [0, 2].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Representation for Neumann Series of Bessel Functions

A closed integral expression is derived for Neumann series of Bessel functions — a series of Bessel functions of increasing order — over the set of real numbers.

متن کامل

Integral Representations for Neumann - Type Series of Bessel Functions

Recently Pogány and Süli [Proc. Amer. Math. Soc. 137(7) (2009), 2363–2368] derived a closed-form integral expression for Neumann series of Bessel functions of the first kind Jν . In this paper our aim is to establish analogous integral representations for the Neumann-type series of modified Bessel functions of the first kind Iν and for Bessel functions of the second kind Yν , Kν , and to give l...

متن کامل

Spectrum of the ∂-neumann Laplacian on Polydiscs

The spectrum of the ∂-Neumann Laplacian on a polydisc in C is explicitly computed. The calculation exhibits that the spectrum consists of eigenvalues, some of which, in particular the smallest ones, are of infinite multiplicity.

متن کامل

Magnetic Neumann Laplacian on a sharp cone

This paper is devoted to the spectral analysis of the Laplacian with constant magnetic field on a cone of aperture α and Neumann boundary condition. We analyze the influence of the orientation of the magnetic field. In particular, for any orientation of the magnetic field, we prove the existence of discrete spectrum below the essential spectrum in the limit α → 0 and establish a full asymptotic...

متن کامل

Spectral Stability of the Neumann Laplacian

We prove the equivalence of Hardyand Sobolev-type inequalities, certain uniform bounds on the heat kernel and some spectral regularity properties of the Neumann Laplacian associated with an arbitrary region of finite measure in Euclidean space. We also prove that if one perturbs the boundary of the region within a uniform Hölder category then the eigenvalues of the Neumann Laplacian change by a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2021

ISSN: ['0022-2488', '1527-2427', '1089-7658']

DOI: https://doi.org/10.1063/5.0037872